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Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig,
D-38106 Braunschweig, Germany

Received 12 January 1998, in final form 22 May 1998

Abstract. A general cellular automaton model for surface reactions is introduced that shows
almost quantitative agreement with the corresponding Monte Carlo simulations for several
surface reaction models. It is generally applicable and can be easily extended to new surface
reaction models. The high performance and the parallelism of cellular automaton simulations
opens the possibility to investigate long simulation times and systems on large lattices.

1. Introduction

Since the pioneering work by Ziff, Gulari and Barshad [1], who introduced a new model
(the ZGB model) for the simulation of surface reaction kinetics in 1986, the frequency and
complexity of the research based on their model has increased considerably. Although such
models are still very limited in accounting for all of the observed features in real reaction
systems they are becoming increasingly powerful techniques in surface reaction studies and
may help us to understand the basic elementary reaction steps in the future [2, 3]. In addition
to the ZGB model new problems such as the formation of spatiotemporal structures [4],
the order of kinetic phase transitions [5–9], energetic adsorbate–adsorbate interaction [10],
the occurrence of kinetic oscillations [11–15], and the transition into chaotical behaviour
[16] have been investigated. These investigations are very demanding because large lattices
and long simulation times are needed in a large number of simulation processes in order to
obtain the correct results.

There exist basically two different approaches to simulate physical lattice models. (i) In
the Monte Carlo (MC) approach the lattice sites are chosen randomly in a perfectly sequential
manner. For long simulation times the mean number of processes is equal for all lattice
sites. However, there exists the possibility that a given site is chosen twice or more in
succession. MC simulations for surface reaction systems are, in principal, easy to set up but
the price to pay for simple programming is the long computation time required. In the MC
simulation of the ZGB model most of the computational cost is based on the generation
of random numbers for the selection of the sites and on the investigation of all nearest
neighbours (NN), checking with which a reaction is possible. (ii) Cellular automata (CA)
are a powerful tool to simulate physical and chemical systems at a high level of complexity
[17]. The CA approach is discrete in space and time. It is fully parallel and all lattice sites
are updated in one single time step. Consequently much fewer random numbers are needed.
Natural processes are neither fully parallel nor purely sequential but are a mixture of both
types.
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Figure 1. Definition of the von Neumann neighbourhood (left) and of the Margolus block (right).
The centre site in the von Neumann neighbourhood has four NNs, whereas in a Margolus block
all four sites are NNs to each other.

However, difficulties may arise during this parallel procedure. This generally holds
for simulations of lattice gas models because synchronous dynamics such as the parallel
update of the states of the lattice sites increases the inherent correlations [18]. A well
known problem is the feedback catastrophe in simulating the Ising model [19]. Moreover,
the parallel update may lead to the violation of physical laws. In the simulation of surface
processes different CA approaches have been used. Chopard and Droz [20] were the first
to introduce a CA approach for the CO+O2 reaction on metal surfaces. In order to obey
the CA laws they were forced to disobey the laws of stoichiometry: one particle may take
part simultaneously in the formation of several reactive pairs. A corrected version [21]
obeys stoichiometry but still lacks agreement with the ZGB model. Similar problems arise
with diffusion processes [17, 22, 23]. Other authors have introduced a CA approach using
2× 2 Margolus blocks as a lattice superstructure. The Margolus block is a special form
of neighbourhood [24] as compared with the generally used von Neumann neighbourhood
(see figure 1). This neighbourhood definition apparently overcomes the above difficulties
[25–27] and shows reasonable agreement with results of MC simulations [28]. Although
this approach could be extended to other reaction systems [29], an attempt to use it for
a NO+ CO/Pt(100) reaction model [30, 31] gives incorrect results. In this model with
dissociative adsorption of NO (see below in section 2.8) the N atoms form checkerboard-like
structures during the MC simulation [31–33] and the system always ends up in an absorbing
state. The Margolus block superstructure fails to describe the special structure of N atoms.
If one uses the von Neumann neighbourhood the N atoms in such a checkerboard structure
are located on sites which are only next NN whereas in a Margolus block two N atoms
on sites connected by a corner are NN and react giving N2. Therefore the checkerboard
structure cannot be formed in a simulation using Margolus blocks. The CA approach using
Margolus blocks gives a broad reactive interval which contradicts MC results [34].

Here we introduce a new CA approach which overcomes these problems stated above
and gives almost quantitative agreement with the corresponding MC simulations. The
paper is organized as follows. In section 2 we give a detailed description of the simulation
procedure following the example of the ZGB model. In section 3 some well known surface
reaction models are revisited and simulations with fast reaction processes on large lattices
are presented. In section 4 conclusions are drawn and prospects are given.
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2. The simulation

2.1. Basic arrangement

We model the surface with a two-dimensional lattice with lattice constanta (which is used
as the unit length), coordination numberz, and side lengthL. Periodic boundary conditions
are applied. Each site can be in stateσ , e.g. withσ ∈ {0, A, B} for the ZGB model, where 0
stands for an empty site andA andB stand for a site covered with CO and O, respectively.

2.2. Transition rates

A kinetic model of the Markovian type is completely defined via its state variablesσ and
the possible transitions which can occur. In our present CA approach we only consider
monomolecular and bimolecular steps and therefore get very simple kinetic definitions of
the individual transitions. Monomolecular steps are the simplest processes because only
one state variableσl changes:

σl
pH⇒ σ ′l with p ≡ P(σl −→ σ ′l ). (1)

σl is the state of lattice sitel. p is the transition rate for this process which is independent
of the neighbourhood.

Bimolecular steps describe processes which change two state variablesσl, σm. In our
model only processes which change the states of two NN sites with|l − m| = 1 are
considered:

σlσm
kH⇒ σ ′l σ

′
m with k ≡ 1

z
K(σlσm −→ σ ′l σ

′
m). (2)

Herek is the corresponding transition rate. Again, the transition rates for these bimolecular
processes depend only on the states of the two NN sites.

2.3. A adsorption

The adsorption of a particleA from the gas phase is modelled as in the ZGB model and
the rate forA adsorption is given by the gas phase concentrationy = yA:

P(0−→ A) = y. (3)

2.4. B2 adsorption

OneB2 particle is adsorbed with rate 2(1− y) if two empty NN sites are found. Here
yB = 1− y is the gas phase concentration ofB2:

K(00−→ BB) = 2(1− y). (4)

2.5. A diffusion

In our model the surface diffusion ofA is defined via the transition rate

K(A0−→ 0A) = D. (5)

The diffusion is modelled as a jump of anA particle onto an empty NN site. It can be
shown that for the diffusion coefficient ofA diffusion on an otherwise empty lattice the
equationDA = 1

z
a2D holds, wherea is the lattice constant andz the coordination number of

the lattice. Therefore our parameterD corresponds to the frequency factor for the diffusion
(all transition rates in the stochastic theory are of dimension [t ]−1).
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2.6. AB reaction

In contrast to the ZGB model we define the reaction constant of theAB reaction via

K(AB −→ 00) = R (6)

with finite R. In the original ZGB model this parameter is removed because the limit of
an infinite reaction constantR→∞ is used; but using this limit cannot be described with
only monomolecular and bimolecular reaction steps. For example theB2 adsorption with
anA particle on a NN site would lead to the chain process

00A→ [BBA] → B00 (7)

which corresponds to a trimolecular process. To avoid dealing with such higher order
processes we remove the reaction parameter in a different way by simply settingR

sufficiently large. We will show that saturation occurs ifR exceeds a certain valueR′.
For R > R′ the system behaviour corresponds to a system with infinite reaction constant.
For simulations with fast surface diffusion the parameter can be removed by changing the
reaction mechanism. In this case reaction occurs when anA particle hops to a NN site
which is occupied byB. In this caseR = D holds.

2.7. Surface reconstruction

In some simulations below we consider the reconstruction of the catalysts surface.α and
β stand for the reconstructed and non-reconstructed surface phase, respectively. Here we
consider only the physical properties and neglect the geometric differencies of the different
phases. In the case of the Pt(100) surface O2 can only adsorb onto theβ phase. In the
description of the structural phase transitionα 
 β stimulated by the presence or absence
of A particles one has to distinguish between two processes: (i) spontaneous formation of a
nucleus of theα phase in a matrix of theβ phase orvice versaand (ii) propagation of the
border between these two phases including the growth and diminishment of such nuclei. In
the simulations presented here we neglect nucleation processes and consider only the phase
propagation which depends on the presence or absence ofA:

K(AαXβ → AβXβ) = V with X ∈ {0, A, B} (8)

K(AβXα → AβXβ) = V with X ∈ {0, A, B} (9)

K(XαYβ → XαYα) = V with X, Y ∈ {0, B}. (10)

Equations (8) and (9) decribe the propagation of the transitionα→ β if a particleA exists
on at least one of the lattice sites near the phase border. Equation (10) corresponds to
the reversed processβ → α under the condition that noA is present. To simplify we
assume that the transition rate is equal for both processes. The linear border between the
α andβ phase moves in one distinct direction dependent on the presence or absence ofA,
respectively, with velocityVαβ = aV/z, whereV is the phase propagation constant. For
details see [14, 15].

2.8. Kinetic schemes

Summarizing the above transition definitions we simulate the following models written in
the more usual form of reaction equations. For the CO+O2 reaction we use

CO(g)+ Sγ 
 CO(a)

O2(g)+ 2Sβ → 2O(a)
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CO(a)+ Sγ → Sγ + CO(a)

CO(a)+O(a)→ CO2(g)+ 2Sγ
Sα 
 Sβ

where S stands for a free adsorption site,γ stands for eitherα or β and (a) or (g) for a
particle adsorbed on the surface or in the gas phase, respectively. Note that in the model
simulated here O2 can only adsorb onto sites belonging to theβ phase and that the phase
propagation Sα 
 Sβ depends on the presence or absence of CO. For additional details see
[14, 15]. For the CO+ NO reaction model we consider the following elementary reaction
steps:

CO(g)+ S→ CO(a)

NO(g)+ 2S→ N(a)+O(a)

CO(a)+O(a)→ CO2(g)+ 2S

N(a)+ N(a)→ N2(g)+ 2S.

This corresponds to the basic model for the CO+ NO reaction which has been discussed
in detail elsewhere [31–33].

2.9. Simulation procedure

The simulation is performed in the following way. Instead of choosing every pair of NN
sites at random, as is done in MC simulations, we choose only one of the corner lattice
sites, e.g. the upper-left corner, and a NN site for it. This is done in accordance with the
neigbourhood rules (e.g. the square (z = 4) or the triangular lattice (z = 6)). The corner
site and its NN then build an oriented two-point ‘superstructure’. This ‘superstructure’ is
periodically repeated to build a tiled mask over the whole lattice. In the whole process
periodic boundary conditions are applied, as is commonly done in such studies. Because
transitions are only possible inside such an elementary two-point structure the whole mask
can be updated at once, i.e. all two-point structures can be accessed in parallel. With
this procedure one savesL2 random numbers per lattice update which would otherwise be
necessary to choose the actual site and its NN site in the MC method. After having generated
the ‘superstructure’ mask for each pair of sites a random number is generated. Depending
on this random number and the state of the NN sites (σlσm) the corresponding transition
is performed. The sum of all transition rates defines the time unit, i.e. it gives the number
of lattice updates neccessary for the simulation of one time step. This sum is normalized
to unity and the interval [0, 1] is then divided into parts whose lengths are proportional to
the individual transition rates. Only transitions in whose interval the random number falls
can occur. Therefore the transition rates are mapped onto transition probabilities. TheA

adsorption as a monomolecular step only changes the state of one site, i.e. considering a
00-pairA adsorbs with ratey into the first 0 or with equal rate into the second 0. This
results in an overallA adsorption rate of 2y, which is correct because we consider two
lattice sites at once. After a full lattice sweep the whole procedure starts over again with a
new initial NN site, which is randomly chosen.

2.10. Correlation functions

Investigation of the correlation functions between the species on the surface leads to a deeper
insight into the structure of the adsorbate layer. The correlation functiongij between two
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Figure 2. Coverages of CO and O as a function ofyCO for the CA approach to the ZGB
model on the square lattice with finite reaction constantR = 10 (dotted),R = 100 (chain), and
R = 1000 (broken). The result of the original ZGB model is given for comparison (full).

particlesi andj is given by

gij (r) = 〈Nij (r)〉
N?
ij (r)

=
Nij (r)

Ni

z(r)2j
, i, j ∈ {0, A, B}. (11)

It is a measure of the spatial correlation between the (not necessarily different) particlesi

andj as a function of their distancer on the surface.i andj represent free sites in addition
to A, B and the other particles considered in the reaction model.Nij (r) is the number of
ij -pairs at a distancer. 〈Nij (r)〉 is the average value over all particles of typei, whereas
N?
ij (r) is the corresponding number of a random particle distribution without correlations

(g?ij (r) = 1), which is given by the numberz(r) of sites at a distancer from the central site
i and the coverage2j of the j particles. (For a more detailed discussion of the correlation
function see [35].)

3. Results and discussion

3.1. Similarity with MC simulations

First we examine the original ZGB model [1]. In this model a second-order phase transition
from aB poisoned state to a steady state occurs with increasing gas phase mole fractiony of
A aty = 0.387 368 [9]. Further increase ofy leads to a first-order phase transition into anA
poisoned state aty = 0.525 60 [36]. As shown in figure 2 and table 1 large deviations from
the original ZGB model exist for small reaction constants (R = 10). The CA approach
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Table 1. Values of the phase transition pointsy1 andy2 and the width1 of the reactive interval
for the reaction on the regular square lattice with different reaction constantsR. The values
of our MC simulation corresponding to the work by Ziff, Gulari and Barshad [1] are given for
comparison. These correspond toR→∞.

R y1 y2 1

1 0.340 0.366 0.026
10 0.382 0.481 0.099

100 0.387 0.520 0.133
1000 0.388 0.526 0.138
∞ 0.387 0.526 0.139

Table 2. Values of the phase transition pointsy1 andy2 and the width1 of the reactive interval
for the reaction on the regular square lattice with different diffusion constantsD. The value of
y2 for D→∞ results from the mean-field (MF) approximation.

D y1 y2 1

10 0.383 0.512 0.129
100 0.389 0.607 0.218

1000 0.391 0.644 0.253
∞ 0.666

agrees only qualitatively with the MC simulation using an infinite reaction constant. It
shows a second-order phase transition aty1 = 0.382 and a first-order phase transition at
y2 = 0.481. Our MC simulation which uses the same finite reaction constants gives exactly
the same results. A comparison with simulations performed with finite reaction constants
by Dumont et al [5] shows qualitative agreement with regard to the shift of the phase
transition points to lower values and the narrowing of the reactive interval. A quantitative
comparison cannot be made because of the different implementation of the adsorption and
reaction processes.

For moderate reaction constants (R = 100) the results of the CA approach quantitatively
agree with those of the ZGB model. In this case the numerical errors in the values of the
critical points as well as in the surface coverages are very small (about 1%). For large
reaction constants (R = 1000) only the value ofy1 shows a small error. The value ofy2

and the surface coverages show excellent agreement with the MC results. The same holds
for the extended ZGB model with surface diffusion ofA particles. Note that in the case of
fast surface diffusion the reaction mechanism is changed in the way described above (i.e.
a reaction occurs ifA hops to a site covered withB) in order to remove the parameterR
because we now haveR = D. As shown in table 2 the value ofy2 approaches the saturation
valuey2(D→∞) = 2

3 with increasingD similar to the MC simulations performed by other
authors [7, 28]. IfD or R, respectively, become sufficiently large our CA approach shows
excellent agreement with the original ZGB model. Even with moderately large reaction or
diffusion constants (R = 100 orD = 100) the agreement is quantitative. For this reason
we can setR′ = 100 because the system clearly shows saturation even for these moderately
large values ofR andD.

The next reaction we simulate with our CA approach is the catalytic NO+CO reaction
model [30–32]. The simulation of this model on a square lattice shows a remarkable
behaviour: no steady state reaction exists for any value ofy because a special surface
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Figure 3. The correlation functiongNN(r) on the square lattice foryCO = 0.23 andt = 100,
101, 102, 103 and 104 (from top to bottom) determined from the CA simulation. This figure
clearly shows the growth of the correlation length with time. In addition one can see that there
are hardly any reactive N pairs on NN sitesgNN(r = 1) ≈ 0.

structure of N atoms is built [31–33, 37]. For small and large values ofy the system reaches
an absorbing state because of large O and CO islands, respectively. In a narrow interval
y ∈ [0.220, 0.235] the coverages of CO and O are of similar magnitude and the system needs
very long simulation times to reach poisoning. In this interval large checkerboard structures
of N atoms are built covering almost the whole lattice. These structures can directly be seen
in the simulation [32] and have been examined via correlation functions [31]. The results
of the CA approach presented here coincide with the results of the MC simulation. The
coverages as a function ofy are the same as in our previous MC study [31] and no differences
can be seen in a graphical representation. In the small intervaly ∈ [0.220, 0.235] the N
coverage reaches values of2N ≈ 0.43 indicating that large N structures are built. Even the
microscopic structure and the temporal evolution (see figure 3) of these checkerboard-like
structures is described correctly by our CA approach, in agreement with previous results
[31, 33]. Although only moderate reaction rates (R = 100) are employed hardly any N
atoms exist on NN sites (gNN(r = 1) ≈ 0). The simulation procedure described above
can easily be applied to models on the triangular lattice because only the neighbourhood
changes. Therefore we ran additional simulations of the NO+ CO reaction model with
R = 100 on this lattice. The CA approach again shows excellent agreement with previous
MC results: the system exhibits a second-order phase transition aty1 = 0.173 and a first-
order phase transition aty2 = 0.344. These values are qualitatively correct, as a comparison
with the valuesy1 = 0.1783 andy2 = 0.3546 from the original model [31, 32, 38] with
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Figure 4. Temporal evolution of the reaction rateRCO2 for the simulation of kinetic oscillation
in the catalytic CO oxidation on a Pt(100) surface. (a) Small fluctuations in the oscillations
of the reaction rate which occur in the simulation with the CA method presented here. (b) A
similar course of a MC simulation where these fluctuations cannot be seen. The right parts show
the corresponding power spectra.

infinite reaction constant shows. Again, the valueR = 100 proves to be sufficient to reach
the saturation properties and gives quantitatively correct results with errors of 10−2.

3.2. Temporal behaviour

As shown above the CA approach presented here is in very good agreement with the MC
simulation and shows almost equivalent results for steady state properties of such reaction
systems. The question that remains is whether the CA approach also shows good agreement
for the temporal evolution of the system. The temporal evolution of the correlation functions
shown above is at least similar to the results of MC simulations [33]. For the purpose
of better comparison we simulated a system which exhibits distinct temporal phenomena,
namely kinetic oscillations in the surface coverages and the reaction rate [14, 15]. As
shown in figure 4 the results of the CA simulation again show very good agreement even
for temporal properties. The power spectra show very similar frequency distributions at
almost equal basic frequenciesω0. It is important to note that even for two independent
MC simulations the frequency distributions arenot identical but only similar. Therefore the
mean kinetic aspects are obtained in agreement with the MC method. A closer look at the
temporal evolution of the reaction rate, however, shows a small but systematic difference.
In the CA simulation the coverages and reaction rates always show very small fluctuations.
These fluctuations arise from the simulation method. Because, in the system considered here,
diffusion is the fastest process (D = 100) a hopping event takes place in most elementary
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Table 3. Relative computational costs for the different simulations methods for the original
ZGB model at small (y = 0.4) and large (y = 0.52) reaction rates. The computational cost for
the CA approach for a lattice side lengthL = 64 is set to unity.

MC (i) CA (ii) MC (iii) MC (iv)

L y = 0.4 y = 0.52 y = 0.4 y = 0.52 y = 0.4 y = 0.52 y = 0.4 y = 0.52

64 0.9 1.5 1.0 1.3 2.5 2.6 0.01 0.07
128 3.8 6.2 4.2 5.2 10.5 11.5 0.05 0.28
256 15.9 27.1 17.8 22.9 47.8 49.5 0.21 1.69
512 194.8 361.3 106.5 128.3 567.5 638.5 2.59 19.30

steps. Reaction is directly coupled to the diffusion because reaction only takes place if an
A particle jumps to a site occupied byB. The hopping is restricted to only two instead of
four (z = 4) or six (z = 6) directions, respectively, for a whole lattice update because the
orientation of the two-site ‘superstructure’ is determined only once per update. This then
leads to bi-directional global diffusion and reaction resulting in these coverage fluctuations.
If the same initial NN site determining the orientation of the ‘superstructure’ is chosen twice
or more in succession the three other NN sites remain unchecked for the corresponding times
of lattice updates. This can lead to an intermediate high density of reactive pairs on NN
sites. If the orientation of the ‘superstructure’ is changed in the next lattice sweep these
reactive pairs will almost completely be removed resulting in a temporarily high reaction
rate and a significant drop in the surface coverages of the reaction partners.

3.3. Computational aspects

After having shown the similarity of our CA approach to MC simulations we now want to
focus on the computational aspects such as computational cost and parallelism. In table 3
we compare four different simulation methods.

(i) The ‘normal’ MC simulation with infinite reaction constant as described in the
original work of Ziff, Gulari and Barshad [1]. This simulation method has been extended to
CO desorption and surface diffusion. It cannot be compared directly to the other methods
because it uses a different timescale of so-called Monte Carlo steps (MCS). In this case we
compare the time needed for the same number of MCS or our time steps, respectively.

(ii) The CA simulation with a correct timescale based on the sum of the transition rates
as described in this article.

(iii) A MC simulation with a correct timescale based on the sum of the transition rates
corresponding to the CA method.

(iv) A MC simulation using a correct timescale and infinite reaction rate. In addition
the simulation program uses lists for the individual adsorbate particles as described in our
previous work [31].

All these simulations have been performed on three different computer systems, all
showing very similar relative computational costs. In order to compare the different
simulation methods we set the time required for the CA simulation of the ZGB model
with y = 0.4 on a square lattice of side lengthL = 64 for t = 100 time steps to unity.
Note, however, that the original MC simulation (i) cannot be compared directly with the
other methods because of the different definition of the time unit. As can be seen in table 3
the MC simulation (iv) using lists outperforms all other simulation methods if applied to
the original ZGB model [1]. Simulations fory = 0.4 and y = 0.52 are performed to
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investigate the influence of the reaction rate. Aty = 0.52 the reaction rate is much larger
so the simulations using an infinite reaction constant ((i) and (iv)) should significantly slow
down compared with those withy = 0.4, whereas the computational time for simulation
methods (ii) and (iii) using fixed transition rates should increase only very slightly because
of the increased counting of particles, updating of lattice sites and so on. This can especially
be seen in the timing of the MC method (iv) using lists because in this case not only the sites
with the reacting particles have to be found and updated but also the places of the particles
in the lists. For the CA simulation (ii) and the MC simulation (iii) a moderate reaction
constant ofR = 100 is applied resulting in results with errors of about 10−2 (see above).
At first sight the CA approach introduced here has no advantage over the established MC
methods. But if one focuses on the computational cost for simulations on large lattices an
advantage emerges: as soon as the whole lattice does not fit into the cache memory of the
computer (hereL = 512) the simulation program generates so-called cache misses. If the
sites are visited in a random order (MC) the site which is processed after the actual site is
far away in most cases. This holds for the spatial order on the lattice as well as for the
memory address in the computer. Therefore the next site is not stored in the fast cache
memory and must be retrieved from the main memory. As a result the computational cost
does not increase by a factor of about 4 (as would be expected for doubling the side length
and which can be seen to hold for smaller lattices) but by a factor of about 12. In the
CA simulation all sites are updated in one time step without any interaction between the
two-point ‘superstructures’. Therefore the lattice sites can be accessed in ascending order.
This leads to a high rate of so-called cache hits, i.e. in most cases the following site to
process is found in the fast cache memory of the computer. Therefore the time increases
only by a factor of about 6 in the case of the CA simulation. However, the MC simulation
method (iv) using lists is still faster by a factor of 7 because the particles are directly picked
from the list and every random number produced is used for a transition. This is not the
case for methods (i)–(iii) where many random numbers are rejected during the simulation.
On the whole this also holds for the ZGB model with diffusion because of the very small
fractional surface coverage of theA (CO) particles.

A completely new situation occurs in simulations where large diffusion constants exist
for surface species with large surface coverages. This is the case in the simulation of kinetic
oscillations during the catalytic CO (A) oxidation. Here the fractionalA coverage varies
between very small and very large values [14, 15]. In the MC simulation method (iv) a
large part of the computational cost is based on the updating of the sites covered byA and
the corresponding list entries, whereas for the CA simulation the situation remains mostly
unchanged because of its definition via the transition rates. Indeed the computational cost
of the latter only increases by about 2% as compared to the ZGB model. The values in
table 4 clearly show that the CA approach is far ahead of the two MC methods, especially
for large lattices. In this table the time needed for 100 time steps in a CA simulation of
kinetic oscillations in the CO oxidation on Pt(100) with the diffusion constantD = 100
and the phase propagation constantV = 1 at y = 0.2 is given to compare the different
simulation methods. For a detailed description of the simulation of the oscillations in the
CO oxidation on Pt single-crystal surfaces see [14, 15]. As can be seen only the CA method
is convenient for simulating these kinetic oscillations. This holds for simulations with large
diffusion constants and even more so for simulations with the combination of large lattices
and very fast diffusion.
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Table 4. Relative computational costs of the different simulation methods for the simulation of
kinetic oscillations in the catalytic CO oxidation on Pt(100). The computational cost of the CA
method for the simulation on a lattice of side lengthL = 128 is set to unity. (By multiplying
all values by a factor of 4.3 they can be compared with those of table 3.)

L CA (ii) MC (iii) MC (iv)

128 1.0 3.1 2.2
256 4.4 14.8 28.2
512 31.7 228.9 251.4

4. Conclusions

In this paper we have introduced a new CA approach for the simulation of surface reactions.
This CA approach shows almost quantitative agreement with the existing MC simulations for
the most important reaction systems in the literature. Furthermore it is a general CA because
it can be easily adapted to new neighbourhood or transition rules modelling different surfaces
or new reaction steps, respectively. It shows a significant reduction of the computational cost
for simulations compared with a corresponding MC simulation because much fewer random
numbers are needed and because of the better use of the computer’s cache memory. This is
especially important for simulations on large lattices which do not fit into this cache memory.
For simulations of systems, where large fractional surface coverages of very mobile surface
species exist, the CA method presented here is the method of choice, especially if these
simulations have to be done on large lattices. This is actually the case for our recent
simulations of oscillations in surface reactions [14–16]. Surface diffusion is generally the
fastest and most prominent process in such reaction systems. Additionally large lattices are
needed to describe experimentally observed macroscopic properties correctly. Because of
its parallel concept the CA method can be easily implemented on parallel computers and
should lead to a large speed-up if the lattice is divided into sufficiently small sublattices
which fit into the cache memory of the individual processors.
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